On the Role of Total Variation in Compressed Sensing

نویسنده

  • Clarice Poon
چکیده

This paper considers the problem of recovering a one or two dimensional discrete signal which is approximately sparse in its gradient from an incomplete subset of its Fourier coefficients which have been corrupted with noise. We prove that in order to obtain a reconstruction which is robust to noise and stable to inexact gradient sparsity of order s with high probability, it suffices to draw O (s logN) of the available Fourier coefficients uniformly at random. However, we also show that if one draws O (s logN) samples in accordance with a particular distribution which concentrates on the low Fourier frequencies, then the stability bounds which can be guaranteed are optimal up to log factors. Finally, we prove that in the one dimensional case where the underlying signal is gradient sparse and its sparsity pattern satisfies a minimum separation condition, to guarantee exact recovery with high probability, for some M < N , it suffices to draw O (s logM log s) samples uniformly at random from the Fourier coefficients whose frequencies are no greater than M .

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Accelerating Magnetic Resonance Imaging through Compressed Sensing Theory in the Direction space-k

Magnetic Resonance Imaging (MRI) is a noninvasive imaging method widely used in medical diagnosis. Data in MRI are obtained line-by-line within the K-space, where there are usually a great number of such lines. For this reason, magnetic resonance imaging is slow. MRI can be accelerated through several methods such as parallel imaging and compressed sensing, where a fraction of the K-space lines...

متن کامل

A Block-Wise random sampling approach: Compressed sensing problem

The focus of this paper is to consider the compressed sensing problem. It is stated that the compressed sensing theory, under certain conditions, helps relax the Nyquist sampling theory and takes smaller samples. One of the important tasks in this theory is to carefully design measurement matrix (sampling operator). Most existing methods in the literature attempt to optimize a randomly initiali...

متن کامل

Unmanned aerial vehicle field sampling and antenna pattern reconstruction using Bayesian compressed sensing

Antenna 3D pattern measurement can be a tedious and time consuming task even for antennas with manageable sizes inside anechoic chambers. Performing onsite measurements by scanning the whole 4π [sr] solid angle around the antenna under test (AUT) is more complicated. In this paper, with the aim of minimum duration of flight, a test scenario using unmanned aerial vehicles (UAV) is proposed. A pr...

متن کامل

Frames for compressed sensing using coherence

We give some new results on sparse signal recovery in the presence of noise, for weighted spaces. Traditionally, were used dictionaries that have the norm equal to 1, but, for random dictionaries this condition is rarely satised. Moreover, we give better estimations then the ones given recently by Cai, Wang and Xu.

متن کامل

Weighted Total Variation Iterative Reconstruction for Hyperspectral Pushbroom Compressive Imaging

Compressed sensing is suitable for remote hyperspectral imaging, as it can simplify the architecture of the onboard sensors. To reconstruct hyperspectral image from pushbroom compressive imaging, we present iterative prediction reconstruction architecture based on total variation in this paper. As the conventional total variation prior is not effective at capturing the correlation within spatia...

متن کامل

An Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing

An Efficient Algorithm For Total Variation Regularization with Applications to the Single Pixel Camera and Compressive Sensing

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • SIAM J. Imaging Sciences

دوره 8  شماره 

صفحات  -

تاریخ انتشار 2015